1,272 research outputs found

    New Associations of Gamma-Ray Sources from the Fermi Second Source Catalog

    Full text link
    We present the results of an all-sky radio survey between 5 and 9 GHz of the fields surrounding all unassociated gamma-ray objects listed in the Fermi Large Area Telescope Second Source Catalog (2FGL). The goal of these observations is to find all new gamma-ray AGN associations with radio sources >10 mJy at 8 GHz. We observed with the Very Large Array and the Australia Telescope Compact Array the areas around unassociated sources, providing localizations of weak radio point sources found in 2FGL fields at arcmin scales. Then we followed-up a subset of those with the Very Long Baseline and the Long Baseline Arrays to confirm detections of radio emission on parsec-scales. We quantified association probabilities based on known statistics of source counts and assuming a uniform distribution of background sources. In total we found 865 radio sources at arcsec scales as candidates for association and detected 95 of 170 selected for follow-up observations at milliarcsecond resolution. Based on this we obtained firm associations for 76 previously unknown gamma-ray AGN. Comparison of these new AGN associations with the predictions from using the WISE color-color diagram shows that half of the associations are missed. We found that 129 out of 588 observed gamma-ray sources at arcmin scales not a single radio continuum source was detected above our sensitivity limit within the 3-sigma gamma-ray localization. These "empty" fields were found to be particularly concentrated at low Galactic latitudes. The nature of these Galactic gamma-ray emitters is not yet determined.Comment: accepted for publication by ApJS, 18 pages, 10 figures, 12 tables; full electronic versions of tables 2-8 are available as ancillary file

    A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    Get PDF
    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques

    bif1, a new BMP signaling inhibitor, regulates embryonic hematopoiesis in the zebrafish.

    Get PDF
    Hematopoiesis maintains the entire blood system, and dysregulation of this process can lead to malignancies (leukemia), immunodeficiencies or red blood cell diseases (anemia, polycythemia vera). We took advantage of the zebrafish model that shares most of the genetic program involved in hematopoiesis with mammals to characterize a new gene of unknown function, si:ch73-299h12.2, which is expressed in the erythroid lineage during primitive, definitive and adult hematopoiesis. This gene, required during primitive and definitive erythropoiesis, encodes a C2H2 zinc-finger protein that inhibits BMP signaling. We therefore named this gene blood-inducing factor 1 and BMP inhibitory factor 1 (bif1). We identified a bif1 ortholog in Sinocyclocheilus rhinocerous, another fish, and in the mouse genome. Both genes also inhibit BMP signaling when overexpressed in zebrafish. In conclusion, we have deorphanized a new zebrafish gene of unknown function: bif1 codes for a zinc-finger protein that inhibits BMP signaling and also regulates primitive erythropoiesis and definitive hematopoiesis

    Silica Vesicle Nanovaccine Formulations Stimulate Long-Term Immune Responses to the Bovine Viral Diarrhoea Virus E2 Protein

    Get PDF
    Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications

    Timed patterns: TCOZ to timed automata

    Get PDF
    Abstract. The integrated logic-based modeling language, Timed Communicating Object Z (TCOZ), is well suited for presenting complete and coherent requirement models for complex real-time systems. However, the challenge is how to verify the TCOZ models with tool support, especially for analyzing timing properties. Specialized graph-based modeling technique, Timed Automata (TA), has powerful mechanisms for designing real-time models using multiple clocks and has well developed automatic tool support. One weakness of TA is the lack of high level composable graphical patterns to support systematic designs for complex systems. The investigation of possible links between TCOZ and TA may benefit both techniques. For TCOZ, TA’s tool support can be reused to check timing properties. For TA, a set of composable graphical patterns can be defined based on the semantics of the TCOZ constructs, so that those patterns can be re-used in a generic way. This paper firstly defines the composable TA graphical patterns, and then presents sound transformation rules and a tool for projecting TCOZ specifications into TA. A case study of a railroad crossing system is demonstrated

    A search for 21 cm HI absorption in AT20G compact radio galaxies

    Get PDF
    We present results from a search for 21 cm associated HI absorption in a sample of 29 radio sources selected from the Australia Telescope 20 GHz survey. Observations were conducted using the Australia Telescope Compact Array Broadband Backend, with which we can simultaneously look for 21 cm absorption in a redshift range of 0.04 < z < 0.08, with a velocity resolution of 7 km/s . In preparation for future large-scale H I absorption surveys we test a spectral-line finding method based on Bayesian inference. We use this to assign significance to our detections and to determine the best-fitting number of spectral-line components. We find that the automated spectral-line search is limited by residuals in the continuum, both from the band-pass calibration and spectral-ripple subtraction, at spectral-line widths of \Deltav_FWHM > 103 km/s . Using this technique we detect two new absorbers and a third, previously known, yielding a 10 per cent detection rate. Of the detections, the spectral-line profiles are consistent with the theory that we are seeing different orientations of the absorbing gas, in both the host galaxy and circumnuclear disc, with respect to our line-of-sight to the source. In order to spatially resolve the spectral-line components in the two new detections, and so verify this conclusion, we require further high-resolution 21 cm observations (~0.01 arcsec) using very long baseline interferometry.Comment: 16 pages, 8 figures and 5 tables; accepted for publication in MNRAS (version 2 based on proof corrections

    The halo model as a versatile tool to predict intrinsic alignments

    Get PDF
    Intrinsic alignments (IAs) of galaxies are an important contaminant for cosmic shear studies, but the modelling is complicated by the dependence of the signal on the source galaxy sample. In this paper, we use the halo model formalism to capture this diversity and examine its implications for Stage-III and Stage-IV cosmic shear surveys. We account for the different IA signatures at large and small scales, as well as for the different contributions from central/satellite and red/blue galaxies, and we use realistic mocks to account for the characteristics of the galaxy populations as a function of redshift. We inform our model using the most recent observational findings: we include a luminosity dependence at both large and small scales and a radial dependence of the signal within the halo. We predict the impact of the total IA signal on the lensing angular power spectra, including the current uncertainties from the IA best-fits to illustrate the range of possible impact on the lensing signal: the lack of constraints for fainter galaxies is the main source of uncertainty for our predictions of the IA signal. We investigate how well effective models with limited degrees of freedom can account for the complexity of the IA signal. Although these lead to negligible biases for Stage-III surveys, we find that, for Stage-IV surveys, it is essential to at least include an additional parameter to capture the redshift dependence

    A connexin/ifi30 pathway bridges HSCs with their niche to dampen oxidative stress

    Get PDF
    Reactive oxygen species (ROS) represent a by-product of metabolism and their excess is toxic for hematopoietic stem and progenitor cells (HSPCs). During embryogenesis, a small number of HSPCs are produced from the hemogenic endothelium, before they colonize a transient organ where they expand, for example the fetal liver in mammals. In this study, we use zebrafish to understand the molecular mechanisms that are important in the caudal hematopoietic tissue (equivalent to the mammalian fetal liver) to promote HSPC expansion. High levels of ROS are deleterious for HSPCs in this niche, however this is rescued by addition of antioxidants. We show that Cx41.8 is important to lower ROS levels in HSPCs. We also demonstrate a new role for ifi30, known to be involved in the immune response. In the hematopoietic niche, Ifi30 can recycle oxidized glutathione to allow HSPCs to dampen their levels of ROS, a role that could be conserved in human fetal liver
    corecore